237 research outputs found

    Three Dimensional Panoramic Fast Flourescence Imaging of Cardiac Arryhtymias in the Rabbit Heart

    Get PDF
    Cardiac high spatio-temporal optical mapping provides a unique opportunity to investigate the dynamics of propagating waves of excitation during ventricular arrhythmia and defibrillation. However, studies using single camera imaging systems are hampered by the inability to monitor electrical activity from the entire surface of the heart. We have developed a three dimensional panoramic imaging system which allows high-resolution and high-dynamic-range optical mapping from the entire surface of the heart. Rabbit hearts (n=4) were Langendorff perfused and imaged by the system during sinus rhythm, epicardial pacing, and arrhythmias. The reconstructed 3D electrical activity provides us with a powerful tool to investigate fundamental mechanisms of arrhythmia and antiarrhythmia therapy in normal and diseased hearts

    Optical Mapping of Action Potentials and Calcium Transients in the Mouse Heart

    Get PDF
    The mouse heart is a popular model for cardiovascular studies due to the existence of low cost technology for genetic engineering in this species. Cardiovascular physiological phenotyping of the mouse heart can be easily done using fluorescence imaging employing various probes for transmembrane potential (Vm), calcium transients (CaT), and other parameters. Excitation-contraction coupling is characterized by action potential and intracellular calcium dynamics; therefore, it is critically important to map both Vm and CaT simultaneously from the same location on the heart1-4. Simultaneous optical mapping from Langendorff perfused mouse hearts has the potential to elucidate mechanisms underlying heart failure, arrhythmias, metabolic disease, and other heart diseases. Visualization of activation, conduction velocity, action potential duration, and other parameters at a myriad of sites cannot be achieved from cellular level investigation but is well solved by optical mapping1,5,6. In this paper we present the instrumentation setup and experimental conditions for simultaneous optical mapping of Vm and CaT in mouse hearts with high spatio-temporal resolution using state-of-the-art CMOS imaging technology. Consistent optical recordings obtained with this method illustrate that simultaneous optical mapping of Langendorff perfused mouse hearts is both feasible and reliable

    Molecular remodeling of ion channels, exchangers and pumps in atrial and ventricular myocytes in ischemic cardiomyopathy

    Get PDF
    Existing molecular knowledge base of cardiovascular diseases is rudimentary because of lack of specific attribution to cell type and function. The aim of this study was to investigate cell-specific molecular remodeling in human atrial and ventricular myocytes associated with ischemic cardiomyopathy. Our strategy combines two technological innovations, laser-capture microdissection of identified cardiac cells in selected anatomical regions of the heart and splice microarray of a narrow catalog of the functionally most important genes regulating ion homeostasis. We focused on expression of a principal family of genes coding for ion channels, exchangers and pumps (CE&P genes) that are involved in electrical, mechanical and signaling functions of the heart and constitute the most utilized drug targets. We found that (1) CE&P genes remodel in a cell-specific manner: ischemic cardiomyopathy affected 63 CE&P genes in ventricular myocytes and 12 essentially different genes in atrial myocytes. (2) Only few of the identified CE&P genes were previously linked to human cardiac disfunctions. (3) The ischemia-affected CE&P genes include nuclear chloride channels, adrenoceptors, cyclic nucleotide-gated channels, auxiliary subunits of Na(+), K(+) and Ca(2+) channels, and cell-surface CE&Ps. (4) In both atrial and ventricular myocytes ischemic cardiomyopathy reduced expression of CACNG7 and induced overexpression of FXYD1, the gene crucial for Na(+) and K(+) homeostasis. Thus, our cell-specific molecular profiling defined new landmarks for correct molecular modeling of ischemic cardiomyopathy and development of underlying targeted therapies

    mRNA Expression Levels in Failing Human Hearts Predict Cellular Electrophysiological Remodeling: A Population-Based Simulation Study

    Get PDF
    Differences in mRNA expression levels have been observed in failing versus non-failing human hearts for several membrane channel proteins and accessory subunits. These differences may play a causal role in electrophysiological changes observed in human heart failure and atrial fibrillation, such as action potential (AP) prolongation, increased AP triangulation, decreased intracellular calcium transient (CaT) magnitude and decreased CaT triangulation. Our goal is to investigate whether the information contained in mRNA measurements can be used to predict cardiac electrophysiological remodeling in heart failure using computational modeling. Using mRNA data recently obtained from failing and non-failing human hearts, we construct failing and non-failing cell populations incorporating natural variability and up/down regulation of channel conductivities. Six biomarkers are calculated for each cell in each population, at cycle lengths between 1500 ms and 300 ms. Regression analysis is performed to determine which ion channels drive biomarker variability in failing versus non-failing cardiomyocytes. Our models suggest that reported mRNA expression changes are consistent with AP prolongation, increased AP triangulation, increased CaT duration, decreased CaT triangulation and amplitude, and increased delay between AP and CaT upstrokes in the failing population. Regression analysis reveals that changes in AP biomarkers are driven primarily by reduction in IKr, and changes in CaT biomarkers are driven predominantly by reduction in ICaL and SERCA. In particular, the role of IICaL is pacing rate dependent. Additionally, alternans developed at fast pacing rates for both failing and non-failing cardiomyocytes, but the underlying mechanisms are different in control and heart failure. © 2013 Walmsley et al

    Optical mapping and optogenetics in cardiac electrophysiology research and therapy:a state-of-the-art review

    Get PDF
    State-of-the-art innovations in optical cardiac electrophysiology are significantly enhancing cardiac research. A potential leap into patient care is now on the horizon. Optical mapping, using fluorescent probes and high-speed cameras, offers detailed insights into cardiac activity and arrhythmias by analysing electrical signals, calcium dynamics, and metabolism. Optogenetics utilizes light-sensitive ion channels and pumps to realize contactless, cell-selective cardiac actuation for modelling arrhythmia, restoring sinus rhythm, and probing complex cell–cell interactions. The merging of optogenetics and optical mapping techniques for ‘all-optical’ electrophysiology marks a significant step forward. This combination allows for the contactless actuation and sensing of cardiac electrophysiology, offering unprecedented spatial–temporal resolution and control. Recent studies have performed all-optical imaging ex vivo and achieved reliable optogenetic pacing in vivo, narrowing the gap for clinical use. Progress in optical electrophysiology continues at pace. Advances in motion tracking methods are removing the necessity of motion uncoupling, a key limitation of optical mapping. Innovations in optoelectronics, including miniaturized, biocompatible illumination and circuitry, are enabling the creation of implantable cardiac pacemakers and defibrillators with optoelectrical closed-loop systems. Computational modelling and machine learning are emerging as pivotal tools in enhancing optical techniques, offering new avenues for analysing complex data and optimizing therapeutic strategies. However, key challenges remain including opsin delivery, real-time data processing, longevity, and chronic effects of optoelectronic devices. This review provides a comprehensive overview of recent advances in optical mapping and optogenetics and outlines the promising future of optics in reshaping cardiac electrophysiology and therapeutic strategies
    • …
    corecore